

# COOPERATIVE SYSTEMS FOR PREVENTIVE TRAFFIC SAFETY

Stephan Zecha

Airbag 2010 - December 8th 2010

#### **Contents**

- Introduction to the world of cooperative technologies
- Cooperative technologies in the national research initiative Ko-FAS
- Cooperative transponders an excellent localization tool
  - Functional principle
  - Unique features
  - Status of realization and system performance
  - Interaction with related technologies
- Cooperative perception with sensor networks based on
  - CADAS sensors in the vehicles and C2C communication
  - Environmental sensors in the infrastructure and information broadcast

Perspectives



# **Cooperative technologies**



Continental Safety Engineering Division Chassis & Safety, PSAD IV



# **Research Initiative Ko-FAS – Goals and partners**

Ko-FAS: Cooperative sensors and cooperative perception for the

predictive traffic safety

Goal: Significant reduction of severe accidents and fatalities

**Realization:** 



#### Partner:





# Cooperative systems for preventive traffic safety Well established cooperative technologies

Secondary surveillance radar – In the civil aviation since 1955

Cooperative transponder – Transfer to road traffic in 20XX









# **Cooperative transponders – functional principle**





# Cooperative transponder: Prototypical realization

#### **Vehicle Set-up**



#### **Performance Data:**

Version: Ko-TAG 1.0

Frequency: 2.4 GHz (ISM Band)

Range: > 200 m

Accuracy: +/- 10 cm

#### **Antenna & Localization-Unit**









#### **Transponder-Unit:**





# **Cooperative transponders – unique applications**

#### **Predictive pedestrian protection**

Pedestrian accident statistics:20 % occur combined with occulation33 % occur at night or twilight

#### Cooperative transponder can

- Classify objects by ID
- Locate pedestrians without line-ofsight
- Track objects chronologically
- Resolve individual pedestrians in groups







# **Cooperative transponders – unique applications**

#### **Omnidirectional safety**

Accident statistics:35 % of all severe accidents occur at crossings

#### Cooperative transponder can

 Recognize objects with significant lateral offset due to large aperture angle







# **Cooperative transponders – unique applications**

#### **Self-localization**

Precise self localization in urban environment

#### Cooperative transponder can

- Find the own position and orientation using infrastructure transponder
- Support guidance through difficult routings





# **Cooperative transponders – Current test results**

#### **Pedestrian crossing scenario**





#### **Collision test**

**Near-miss test** 





# **Cooperative transponders – Current test results**

#### Vehicle turns in while pedestrian crossing scenario



Messdatenfilm einfügen



# **Cooperative transponders – Current test results**

#### **Cross-Road application**



Messdatenfilm einfügen





# Alignment possibilities with related technologies

#### **Approximation of latest C2C standard by:**

- Usage of frequency bandwidth close to C2C standard (5.9 GHz)
- Implementation of 802.11p communication protocol

#### **Segmentation in 3 Sub-channels**

- Management channel for TAG handling
- DoA Channel for angle measurement
- TOF channel for distance measurement
- Dynamic communication topology
- Temporally separation of angle and distance measurement

# RANGE\_CH MAC\_SUPERFRAME\_SLOTS \* MAC\_SLOT\_TIME \* MAC\_SLOT\_TIME

#### **Advantages for C2C and C2I**

- Availability of precise relative position measurement in urban environment
- Communication link of C2C could be "physically" linked to position measurement (significant security advantage)

#### Possible realization

Integrated communication and localization unit



# Cooperative systems for preventive traffic safety Interconnected sensors for cooperative perception





#### Interconnected sensors for seamless observation of cross-roads





# Cooperative systems for preventive traffic safety Interconnected sensors for seamless observation of cross-roads

#### Public cross road:







. \ / / / / / / /

#### Generic cross road:









# Cooperative systems for preventive traffic safety Unique features and perspectives

#### **Unique Features:**

- Clear classification of traffic partners
- Recognition and chronological tracking of hidden objects
- Big aperture angle (beyond 120 °): Cross-road sensor
- Physical replacement of security key required for C2C and C2X
- Precise localization in urban environment

#### **Next steps:**

- Proof of system performance at prototype stage
- Find possibilities for interweaving with related technologies (e.g.: C2C)
- Internationalization & standardization





