

Test Methods for Efficient Verification of Advanced Driver Assistance Systems

Testmethoden zur wirtschaftlichen Absicherung aktueller Fahrerassistenzsysteme

Mark Schulte

Continental Safety Engineering International GmbH

Supported by:

on the basis of a decision by the German Bundestag

- 1 Testing: Scenarios and Test Conditions
- 2 Test Tools and Steering Robot
- 3 Test Setup: Required Equipment for integrated Safety Testing
- 4 Conclusion

Ko-KOMP stands for 'Cooperative Components'

In the scope of Ko-KOMP

- Information, generated from the surrounding field of the vehicles and their sensors, about the driving periphery and driving dynamics, are used for the triggering of preventive safety measures
- Functional intervention to the longitudinal and lateral guidance of the vehicles is studied and implemented in the experimental vehicles
- The protective potential of the cooperative vehicle safety systems, in due consideration of different prophylactic protective measures, are evaluated and required methods are developed
- The quality and availability of communication circuits, between road users in a realistic environment, are studied

Test Scenarios and Test Conditions

FORBCHUNGSINITIATIVE

Ne:	Testusternehmen	Abstand	V-Ego km/h	V-Cu-	TTC Sek.	Bremsverzögerung m/v*
1	AEB	(250)	60	20	1.4	(+)
2	AEB	250	60	40	-	1146
3	AEB	250	80.)	20		
4	AEB	250	80	40		
5	AEB	60	83	80	0.4	-3
6	AEB	60	80	80	-	-5
7	AEB	150	80	40	-	-3
8	AEB	150	60	40	2400	-3
0	NCAP	150	72	0	2.7	114
10	NCAP	30	72	72	2,4	-3
п	NCAP	150	72	1.32	2,1	
11	Continental, Bosch, AEB	250	50	20	100	658
13	Courinental, Bosch, AEB	250	100	60	1	
14	Continental, Bosch, AEB	60	80	80	1	-3
15	Continental, Bosch, AEB	40	60	60	14	-3
16	Continental, Bosch, AEB	15	30	30	25	9
17	USA NCAP	150	72	72	2.7	

Cornerstone Specification

Measurement Precision:

- Vehicle and target speed to 0.1 km/h
- Vehicle and target lateral and longitudinal position to 0.03 m
- Vehicle and target yaw rate to 0.1°/s
- Vehicle and target longitudinal acceleration to 0.1 m/s²
- Steering wheel velocity to 1.0 °/s

Handling:

- Simple and accurate handling of the systems
- Robustness under test conditions
- Short setup times and applicable universally in different vehicles

Test Tolerances:

- Speed of Vehicle and target ± 1.0 km/h
- Lat. deviation from test path 0 ± 0.1 m
- Relative distance vehicle and target 0 ± 0.5 m
- Yaw velocity 0 ± 1.0 °/s
- Steering wheel rotation 0 ± 15.0 °/s

- 1 Testing: Scenarios and Test Conditions
- 2 Test Tools and Steering Robot
- 3 Test Setup: Required Equipment for integrated Safety Testing
- 4 Conclusion

AEB Test Tools MTD - Moving Target Device

The MTD is designed for

- Intersection Assist (ISA)
- Forward Collision Warning (FCW)
- Rear Cross Traffic Alert (RCTA)

Technical Specification

• Acceleration: +/- 10 m/s²

Test Track: 150 m

• Speed: 80 km/h

• Accuracy: +/- 5 cm

Test Variations

 Longitudinal scenarios (Autonomous Emergency Braking)

Crossing scenarios

AEB Test Tools MTD - Moving Target Device

The MTD is designed for

- Intersection Assist (ISA)
- Forward Collision Warning (FCW)
- Rear Cross Traffic Alert (RCTA)

Technical Specification

• Acceleration: +/- 10 m/s²

• Test Track: 150 m

• Speed: 80 km/h

Accuracy: +/- 5 cm

Ko-TAG Intersection Test

Testing of

- Autonomous Emergency Braking (AEB)
 e.g. EuroNCAP Safety Assist
- Emergency Steer Assist (ESA)
- Forward Collision Warning (FCW)

Test Variations

- Longitudinal scenarios (Emergency Brake Assist)
- Offset Collision

Test Vehicle

Target

Technical Specification

Towing Device: 15 m

• Deceleration: up to 8 m/s²

• Speed: 80 km/h

Accuracy: Depends on towing vehicle

Set up and handling by one person

AEB Test Tools ETD - EBA Towing Device

Testing of

- Autonomous Emergency Braking (AEB)
 e.g. EuroNCAP Safety Assist
- Emergency Steer Assist (ESA)
- Forward Collision Warning (FCW)

Technical Specification

• Towing Device: 15 m

• Deceleration: up to 8 m/s²

Speed: 80 km/h

Accuracy: Depends on towing vehicle

Set up and handling by one person

Maximum Braking

Collision

AEB Test Tools ETD - EBA Towing Device

Testing of

- Autonomous Emergency Braking (AEB)
 e.g. EuroNCAP Safety Assist
- Emergency Steer Assist (ESA)
- Forward Collision Warning (FCW)

Technical Specification

• Towing Device: 15 m

• Deceleration: up to 8 m/s²

• Speed: 80 km/h

Accuracy: Depends on towing vehicle

Set up and handling by one person

Lane Change

AEB Test Tools Automatic Lateral Guidance

- High dynamic path-following close to stability threshold with high repetition accuracy.
- Conduction of false-positive avoidance tests

- Positioning via RTK D-GPS
- Setup time + parameter setting app 2h
- PC based Track Design
- Applicable to any vehicle
- 0.8g lateral acceleration
- Very high repetition accuracy
- Lane accuracy of ±2cm

AEB Test Tools Automatic Lateral Guidance

- The steering angle can be set by the system with a very small delay
- The difference during the evasion process with 0.8g is only ± 4 cm, as shown in the graph
- The actuator determines the control input from the difference between the actual and the targeted position

• The steering wheel is automatically turned to the right direction via a map-based control

system

- 1 Testing: Scenarios and Test Conditions
- 2 Test Tools and Steering Robot
- Test Setup: Required Equipment for integrated Safety Testing
- 4 Conclusion

EBA Test Setup: Required Equipment

Currently envisaged Setup:

EBA Test Setup: Required Equipment

Recommended simplified Setup

- 1 Testing: Scenarios and Test Conditions
- 2 Test Tools and Steering Robot
- 3 Test Setup: Required Equipment for integrated Safety Testing
- 4 Conclusion

- With the test tools developed, new possibilities were created to perform tests up to a collision safely
- A complete setup was created to fulfill the current test requirements for driver assistance system tests
- The systems have already been used in serial as well as preserial developments
- Through the simulation techniques, also used in the Ko-KOMP studies, a basis for an extensive coverage of the systems was created

Thank you for your attention!

Mark Schulte