Development of communication protocols for dynamic C2X networks

Entwicklung von Kommunikationsprotokollen für dynamische Car2x-Netzwerke

Prof. Dr.-Ing. Axel Sikora,
Manuel Schappacher, Simon Gutjahr
Steinbeis-Innovationszentrum Embedded Design & Networking
Overview Work Packages

(1) design process & protocol specification

(2) protocol integration and verification:
 (1) simulation
 (2) emulation testbed
 (3) monitoring tools

(3) security: authentication, privacy, stability

(4) system & hardware design:
 (1) PCB for digital communication part
 (2) system FPGA
 (3) system integration
(1) design process & protocol specification

(1.1) design process

• development process following spiral development process

• specification

• simulation

• emulation

• field tests

(1) design process & protocol specification
(1.2) system architecture

• On Board Unit (OBU) built in vehicles consist of
 • A Localization Unit (LU) that communicates with SafeTAGs and is able to localize them (distance and angle measurements).
 • A Fusion Unit (FU) that reads measurement data from the LU and tracks objects. It reads in further sensor data e.g. from cameras to elaborate the tracking algorithms.

• SafeTAG can be
 • A Vulnerable Road User (VRU) such as a pedestrian or cyclist.
 • A Vehicle TAG (VT) to support pre-crash safety among vehicles.
 • A Road Side Unit (RSU) that gives an OBU the possibility of a precise self localization.
(1) design process & protocol specification
(1.3) system specification

• SafeTAG sends cyclic announcements
• OBU within communication range receives announcements and replies with a network ID that includes time slot information (further packets e.g. if assigned time slot is occupied)
• Cyclic ToF measurements during assigned time slot in the ToF channel
• SafeTAG sends sensor data on request during DoA/Data phases
• OBU estimates the angle of incoming data frames

→ Endangerment level of the SafeTAG is determined using angle, distance and sensor data
(1) design process & protocol specification
(1.3) system specification

Registration
- Observation of the management channel
- Reply to registration requests of the TAGs
- Assignment of addresses and time slots

AoA (Angle Measurement)/Data
- Transmission of a Request-Beacon
- Transmission of the replies by the addressed TAGs
- Angle Measurement of the arrived signal

ToF (Distance Measurement)
- Transmission of Beacons
- Time-Of-Flight Measurements for each TAG in its time slot
- Duration of a time slot < 15μs
Communication flow consists of 3 superframes in different channels

- **Network Management**
 - channel arbitration with a CSMA/CA algorithm
 - detection of new devices and connection establishments.
 - reconfiguration of connected devices

- **Time of Flight (TOF) Measurements**
 - 50 MHz bandwidth
 - time slots to provide a deterministic behaviour
 - time synchronisation driven by beacon

- **Angle of Arrival (AOA) Measurements/Data**
 - transmission of sensor data
 - angle measurements with 802.11p data frames
 - time slotted channel access
 - beacon driven phases. Beacon contains configuration of the following time slots

1 cycle (~3ms)
(2) protocol integration and verification
(2.1) network simulation

- network simulation with *OPNET Modeler 16*
 - close to real physical channel characteristics (data rate, bandwidth…)
 - definition of relevant scenarios and statistics to verify proposed protocol
 - node movement based on defined paths or on random
 - parameterization of network protocol
(2) protocol integration and verification
(2.1) network simulation

• simulation automation
 • scripting to automatically generate scenarios to generate statistical data
 • simulation server for long-term scenarios

• statistical analysis using Matlab
 • automated presentation of OPNET simulation results
 • comparison & analysis
protocol integration and verification

(2.2) emulation & testbed

- objective: verify stability, compatibility and coexistence
- design of emulator / testbed
(2) protocol integration and verification
(2.3) emulation & testbed
(2) protocol integration and verification

(2.3) emulation & testbed

- automated measurements in MATLAB environment
 - Parameterisation of test cases
 - configuration and launch of devices
 - collection of measurement and statistical data
 - using extended firmware
- automated generation of pre-defined plots and tables
(2) protocol integration and verification
(2.2) emulation & testbed

• example: communication with disturbed ToF channel
(2) protocol integration and verification
(2.3) tools
(3) Security & Safety

(3.1) Objectives

• security
 • confidentiality
 • authentication
 • integrity
 • no traceability of network nodes
 • unambiguous identification of anonymous nodes

• safety / functional safety
 • support hard real-time constraints
 • support all-around safety (RUS) in software
 • distinction between SafeTAGs and RUS-TAGs

• robustness
 • error detection using Cyclic Redundancy Checks (CRC)
 • plausibility check for detection of external attacks
(3) Security & Safety
(3.2) Architecture Elements

• concept and implementation of an integrated security and safety architecture
(3) Security & Safety
(3.3) Concepts

• multiple identities per participant
 • basic identity
 • one time identity for authentication at back-end server
 • pseudonym identity
 • continuously changing identities for authentication in wireless network
 ➢ unambiguous identification of anonymous nodes

• public key infrastruktur / pseudonym provider
 • certificates according to IEEE 1609.2 standard for basic identity & pseudonyms
 • generation and distribution of certificates
 • assignment of pseudonyms to basic identity
(3) Security & Safety
(3.3) Concepts

- identification service
 - signing and verification of all RF messages
 - Elliptic Curve Digital Signature Algorithm (ECDSA) 256 Bit

- encryption service
 - symmetric encryption of all relevant RF messages
 - Advanced Encryption Standard (AES) 128 Bit
 - in hardware

- pseudonym service
 - application of new certificates (pseudonyms, basic identities) at PKI back-end
(3) Security & Safety
(3.4) Implementation

- **Libtomcrypt**
 - Open Source Library

- **security service:**
 - platform: FPGA, NIOS2 and OPNET simulator
 - C

- **Back-End infrastructure:**
 - Windows application in C/C++
(4) Hardware Design

- overall architecture with modular OBU and TAG-approach
(4) Hardware Design
(4.1) PCB

• PCB Design of Altera Arria2GX Board
 • split of layout into FPGA board and base board
 • FPGA board contains FPGA and peripherals (memory, CPLD…)
 • base board for power distribution & Ko-TAG components (interfaces, reference clock, MCU…)
 • for future cost-optimized FPGA boards the base board can be re-used
(4) Hardware Design
(4.2) system FPGA

- abstraction of system complexity for fusion unit
 - LocON protocol for standardised exchange of localisation and data information
 - separation of asynchronous configuration from real-time data
 - autonomous administration of TDMA-time slots
 - arbitration of communication bandwidth depending on risk level per RUS-TAG and SafeTAG.
 - control and synchronisation of AoA functionality
(4) Hardware Design
(4.3) system integration

- Implementation of LocON protocol between localization and fusion units
 - basic implementation of LocON protocol as NIOS firmware
 - integration of own GBit-Ethernet MAC hardware
 - integration of own embedded TCP/IP stack
 - selection of optimum parameter for communication with fusion unit

Data throughput depending on packet sizes at different packet elements:
angle : data : distance

min payload to send/byte

KBytes/s

LocOn Nachrichten / s
1:1:1
30:30:30
1:10:40

18.09.2013
Development of communication protocols for dynamic C2X networks
Thank you for your attention!