

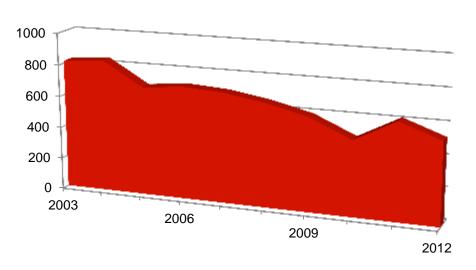
Cooperative Pedestrian Protection

Kooperativer Fußgängerschutz

Stefan Kern, Daniel Westhofen Continental Safety Engineering International GmbH Supported by:

on the basis of a decision by the German Bundestag

Accident statistics by types of accidents 2009:



Causes of accidents: Inattention, misjudgment, visual obstruction

Killed VRUs:

Caused by: Unbraked collisions (33%), No evasion (80%)

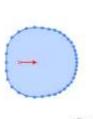
Very high potential to avoid most of the collisions by means of Active Safety Systems

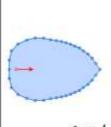
Potential of Cooperative Systems

State of the art pedestrian detection:

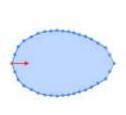
- Warn or brake decision based on sensor fusion
- E.g. combination of (mono) camera and radar
- Recall and precision limited by hardware
- Depending on line of sight

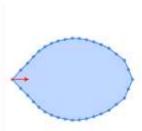
Potential of cooperative systems:

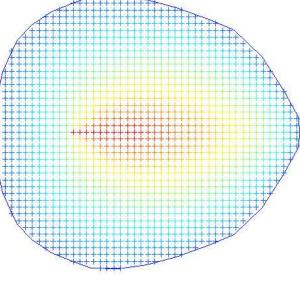

- Possible candidate for sensor fusion
- Mono / Stereo Camera + Ko-TAG:
 - Systematic hypothesis generation
 - Scene-optimized use of the processing capabilities
 - Improved detection delay in obscured scenarios
- Stereo Camera + Ko-TAG:
 - Complementary position measurement
 - Improved precision and higher reliability

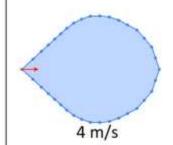


Physiological pedestrian movement model

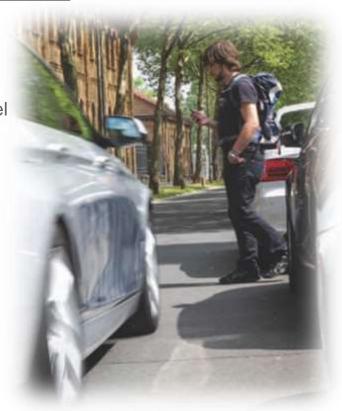

- Based on empirical assessment of motion capabilities
- First stage:
 - Simple model of the maximum physiological potential
 - Typical pedestrian movement velocities
 - Physiological potential of acceleration and rotation
- Second stage:
 - Model of the physiological motion range
 - Weighted movement area

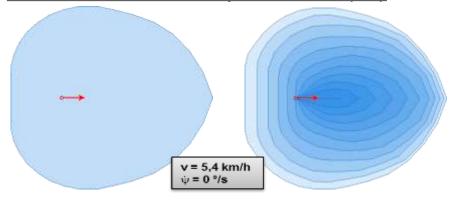

0 m/s


1 m/s

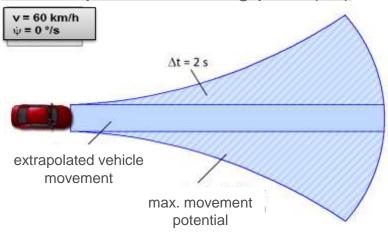


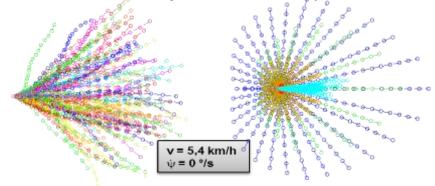
2 m/s

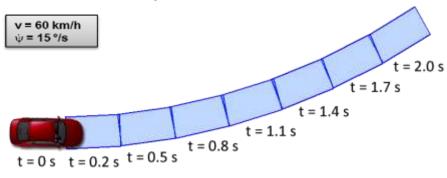

3 m/s



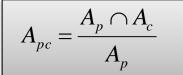
Potential of the physiological pedestrian movement model

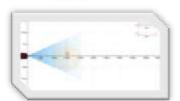

- Improved tracking algorithms:
 - Traditional object tracking in Cartesian coordinates
 - Filter prediction based on generic movement models
 - Noise / Prediction enhancement with the physiological model
 - e.g.: Kalman Filter with constant velocity movement model
- Refined ADAS functions:
 - More precise movement information for pedestrians
 - Improved scene understanding and collision risk estimation
 - Reliable warn and brake functionality of the system

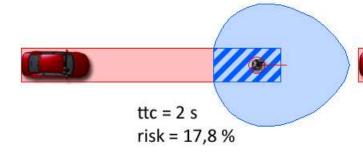

Movement area of a pedestrian (2s)

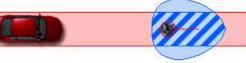

Vehicle possible driving path (2s)

Time discrete trajectories of a pedestrian

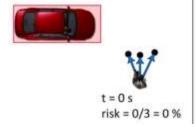


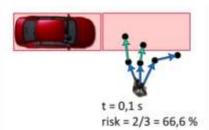

Time discrete position of a vehicle

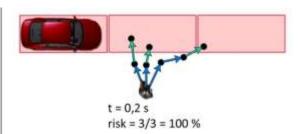


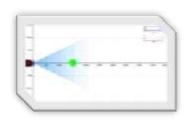

Collision Risk Prediction

Collision risk model: Area-Pedestrian-Car (APC)

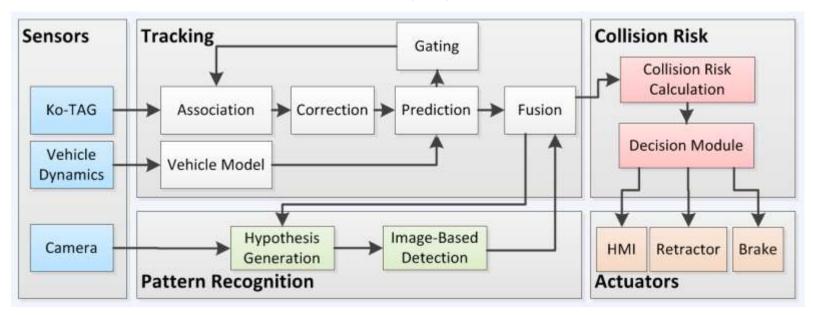







Collision risk model: Probabilistic Monte Carlo (PMC)

$$P_{mc} = \frac{Collision\ Count}{Trajectory\ Count}$$



System architecture of a Pedestrian Safety System

Verdeckung:

Unverdeckt:

Testing Possibilities

K o - F A S

Control Room:

For control, data acquisition and power source, heated

Guide Rail:

Easy assembly in various setups including curves

Carriage:

Cable driven, with robust dummy suspension

Aluminum Frame:

Easy assembly in various setups

Ontinenta

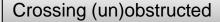
Pedestrian Target Device

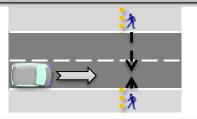
Width:16m

Clearance: 2.9m

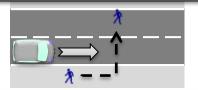
Light -Barrier Trigger: (not pictured), light-barrier for triggering a movement with adjustable delay

Electric Drive:

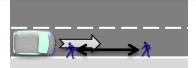

Precise positioning with external absolute encoder

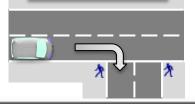

Soft Shell Dummy: Impact resistant, interchangeable, Adult / Child dummy

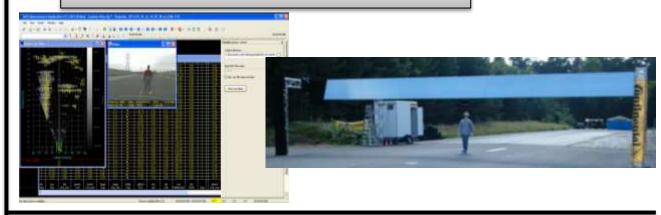
Radar Deflectors: Preventing the frame from disturbing radar signals


Testing Possibilities

FORECHUNGSINITIATIVE




Alongside then crossing


Alongside in Vehicle Lane

Turn, Intersect

Also suitable for Radar due to Radar deflectors

Dummy strikeable without damage

System Demonstration

