Inter-Vehicle Safety by Transponder Based Localization

Fahrzeug-Fahrzeug-Sicherheit durch transponderbasierte Ortung

Erich Lankes
Daimler AG
Phases of Sensorrevolution

Ko-TAG

Phase I
Monitoring of vehicle and driver behaviour for risk assessment

Phase II
Monitoring of the vehicles adjacencies to detect imminent dangers

Phase III
Gathering of detailed information of the spacious environment to enhance the drivers awareness of imminent dangers

“feel”

“see”

“communicate”

18.09.2013
Inter-Vehicle Safety by Transponder Based Localization
• Localization and tracking of visible and occluded objects
• Calculation of possible path of collision
• Driver information and driver warning
• Intervention into vehicle dynamics (partially/full autonomous braking)

→ Driver assistance and collision avoidance in crossing traffic situations
360°-Detectability (passive localization)

- Vehicle is detectable all-around
- Active localization only in forward direction
- Main intersection (accident-) scenarios addressable
- Basic system setup (localization unit, antenna, tags) same as VRU-Setup
- Vehicle integration effort identical to VRU system
Driver warning, intervening systems

- Situational action plan required
- Reliable collision detection required
- Humans (often) react different to machines ("sometimes it is better to speed up than to brake")
- Wrong reaction could lead to disaster
Uncoordinated Actions

[Source: youtube.com]
Differentiation between closed approach and imminent collision requires reliable calculation of errors.
Trigger Algorithms

Crossroads scenarios

Circular driving

Contrive

- Preselection of „endangered“ objects (TTC, closed approach)
- Tracking of critical vehicles
- Consideration of errors (positioning, motion) (if so with default values)
- If risk of collision (ROC) is stable ➔ triggering the action concept / warning strategy
Action Concept and Warning Strategy

Action Plan: detect – inform – warn – alert – intervention

Scenario: The system detects a potential risk of collision (ROC) with an estimated time-to-collision (t_{ttc}) of ≤ 5 sec which is increasing and valid until $(t_0 - 2)$.

- **Step/Phase:**
 - **Step 1:** Cyclic localization (~20ms) (**detection**, tracking, prediction, collision risk calculation)
 - **Step 2:** Visual **information** on existing ROC
 - **Step 3:** Audio-visual **warning**
 - **Step 4:** Audio-visual **alert**, seat-belt tensioner, autonomous **braking**

Time to Collision:
- $t_0 - 5$
- $t_0 - 4$
- $t_0 - 3$
- $t_0 - 2$
- t_0
Real-Life Scenario

[Source: youtube.com]
Vehicle Integration

Test vehicles: S-Class (W221), smart (MC451)

- Hardware and software architecture development
- Identification of necessary interfaces
- Realization
Guard System for All-around Safety

Inter-Vehicle Safety by Transponder Based Localization

18.09.2013
Vehicle Integration Localization Unit (OBU)

- Localization Unit
- antenna array
- air pipe
- cooling fins
- cross member
- connectors OBU
- On-Board Unit (OBU) (localization unit)
- antenna array
- Bumper
- case (rapid prototyping)
Vehicle Integration
Vehicle Control Components
Vehicle Integration
Human Machine Interface (HMI)

- collision warning
 - permanent light
 - flashlight
 - buzzer

Headunit-Display (Visualization)

Additional (Debug-) Display

Trackball Keyboard

18.09.2013
Inter-Vehicle Safety by Transponder Based Localization
- TAG-Management
- Risk management
- Trigger algorithms
- Tracking
- Vehicle control (CAN)
- HMI
System Vehicle Integration
User Interface

Vehicle display (HMI)

Probe vehicle B within detection zone

Movement tube of ego-vehicle

Detected probe-vehicle A with potential collision risk

Detection zone

Predicted path

Ego-vehicle

Danger zone

System active

Risk of collision

Tagdata
Type: Smart
vrel: 35 km/h
Size: 2,8x1,8m
ttc: >5s

...
System for „All-Around Safety“ realized in S-class test vehicle
Join our demo tomorrow
Thank you for your attention!