

Will He Run into Danger? (Prediction of Pedestrian Behaviour)

Project Ko-PER

Motivation and Sensor Setup

Avoid collisions with crossing pedestrians (PEDs):

- Detection of gait initiation and prediction of the PED's trajectory
- Issue an intersection Decentralized Environmental Notification (iDEN)

Perception at crosswalks:

- 2 stationary mounted High-Definition video-sensors HD1, HD2, operating @ 50 Hz
- 4 eight-layer laser scanners operating @ 12.5 Hz

Method

iDEN triggered by motion pattern classification using Interacting Multiple Model Extended Kalman Filter (IMM-EKF), constant velocity (CV) model probability and MCHOG starting probability to detect initiation of gait:

- Edge-Based Motion History Image
- Motion Contour HOG-like descriptor (MCHOG)

iDEN trajectory prediction:

- Piecewise linear velocity model
- Gait parameters derived from video data captured at the Ko-PER intersection

Reference: S. Köhler, M. Goldhammer, S. Bauer, S. Zecha, K. Doll, U. Brunsmann, K. Dietmayer: "Stationary Detection of the Pedestrian's Intention at Intersections," *accepted for publication in: IEEE Intelligent Transportation Systems Magazine, ITSC 2012 Special Issue*, invited Paper.

Results

Intention Detection

Trajectory Prediction

Time	lin.	lin.	lin.
	mean	min	max
0.6 s	0.12m	0.03m	0.28m
1.2 s	0.17m	0.04m	0.29m
1.8 s	0.23m	0.07m	0.41m
2.4 s	0.26m	0.04m	0.52m
1.2 s	0.09m	0.04m	0.14m
1.2 s 1.8 s	$0.09m \\ 0.16m$	$\begin{array}{c} 0.04m \\ 0.07m \end{array}$	$0.14m \\ 0.29m$
1.8 s	0.16m	0.07m	0.29m
1.8 s	0.16m	0.07m	0.29m
1.8 s 2.4 s	$0.16m \\ 0.19m$	$\begin{array}{c} 0.07m \\ 0.04m \end{array}$	$0.29m \\ 0.39m$

Sensor Intelligence.

